Teorema de Darboux
Em análise real, o teorema de Darboux, cujo nome se refere ao matemático francês Gaston Darboux, afirma que as derivadas de funções deriváveis satisfazem a propriedade dos valores intermédios: a imagem de um intervalo é novamente um intervalo.
Enunciado
[editar | editar código-fonte]Seja I um intervalo de R e seja f uma função derivável de I em R. Então f′(I) é um intervalo de R.
Uma maneira equivalente de formular a conclusão do teorema é: se a,b ∈ I e se y ∈ R for tal que y está entre f′(a) e f′(b) (ou seja, f′(a) ≤ y ≤ f′(b) ou f′(a) ≥ y ≥ f′(b)), então existe algum c entre a e b tal que f′(c) = y.
Também se pode centrar o enunciado em f′ e não em f, ficando:
- Seja I um intervalo de R e seja f uma função primitivável de I em R. Então f(I) é um intervalo de R.
Vê-se então que este teorema generaliza o teorema dos valores intermédios pois, pelo teorema fundamental do Cálculo, qualquer função contínua é primitivável. Por outro lado, há funções primitiváveis que são descontínuas. É o caso, por exemplo, da derivada da função dada por
Na verdade,
é descontínua em por não existir o limite de quando tende para 0. Então é primitivável (e, portanto, envia intervalos em intervalos), apesar de ter uma descontinuidade na origem.
Demonstração
[editar | editar código-fonte]Vai-se começar por fazer a demonstração no caso em que y = 0 e em que f′(a) ≥ 0 ≥ f′(b). Quer-se então provar que f′(c) = 0, para algum c entre a e b. Naturalmente, se f′(a) = 0 ou f′(b) = 0 então nada há a provar. Vai-se agora supor que f′(a) > 0 > f′(b).
Resulta de se ter f′(a) > 0 e da definição de derivada que existe algum d entre a e b tal que f(d) > f(a). Pelo mesmo argumento, que existe algum d′ entre a e b tal que f(d′) > f(b). Por outro lado, a restrição a [a,b] da função f tem um máximo em algum ponto c (pelo teorema de Weierstrass) e, pelo que foi visto, c não pode ser igual a a nem a b. Logo f′(c) = 0.
O caso em que y = 0 e em que f′(a) ≤ 0 ≤ f′(b) é análogo.
Finalmente, o caso geral resulta dos casos particulares já demonstrados aplicados à função g definida por g(x) = f(x) − y.x.
Descontinuidades
[editar | editar código-fonte]Seja , em que é um intervalo aberto, a derivada de uma função diferenciável em . Isto é, para cada .
Como se viu num exemplo acima, a verificação da propriedade do valor intermédio não impede que admita descontinuidades no intervalo . Porém, o teorema de Darboux tem implicações imediatas no tipo de descontinuidades que pode ter.
Notemos que este tipo de questão se põe igualmente, embora de maneira diferente, a propósito do teorema de Lebesgue na integrabilidade de uma função à Riemann num intervalo .
Na verdade, de acordo com Walter Rudin,[1] se for uma descontinuidade de então necessariamente:
- I) não é uma descontinuidade removível;
(isto é, , e ).
- II) não é uma descontinuidade em salto;
(ou seja, , mas ).
Isto significa que tem necessariamente de ser uma descontinuidade essencial segundo a terminologia inserida por John Klippert.[2]
Porém, outras duas situações devem igualmente ser excluídas (ver John Klippert[3]). Deve também ter-se:
- III) .
- IV) .
Podemos então afirmar que as únicas descontinuidades admissíveis por são as descontinuidades essenciais fundamentais, ou seja, aquelas em que pelo menos um dos limites laterais, ou , não existe em . Isto significa que se nalgum ponto , a função possuir uma descontinuidade que não seja deste tipo, então não é primitivável no intervalo .
Referências gerais
[editar | editar código-fonte]- Agudo, F. R. Dias, Análise Real (3 volumes), Lisboa: Escolar Editora, 1994
- Ostrowski, A., Lições de Cálculo Diferencial e Integral (3 volumes), Lisboa: Fundação Calouste Gulbenkian, 1981
Referências particulares
[editar | editar código-fonte]- ↑ Rudin, Walter. Principles of Mathematical Analysis. [S.l.]: McGraw-Hill,. p. 109, Corollary.
- ↑ Klippert, John (1989). «Advanced Advanced Calculus: Counting Discontinuities of a Real-Valued Function with interval Domain». Mathematics Magazine (62): 43-48.
- ↑ Klippert, John (2000). «On a discontinuity of a derivative». International Journal of Mathematical Eduacation in Science and Technology (31:S2): 282-287.